Modeling the mechanics of tissue-engineered human heart valve leaflets.
نویسندگان
چکیده
Mathematical models can provide valuable information to assess and evaluate the mechanical behavior of tissue-engineered constructs. In this study, a structurally based model is applied to describe and analyze the mechanics of tissue-engineered human heart valve leaflets. The results from two orthogonal uniaxial tensile tests are used to determine the model parameters of the constructs after two, three and four weeks of culturing. Subsequently, finite element analyses are performed to simulate the mechanical response of the engineered leaflets to a pressure load. The stresses in the leaflets induced by the pressure load increase monotonically with culture time due to a decrease in the construct's thickness. The strains, on the other hand, eventually decrease as a result of an increase in the elastic modulus. Compared to native porcine leaflets, the mechanical response of the engineered tissues after four weeks of culturing is more linear, stiffer and less anisotropic.
منابع مشابه
Doppler echocardiographic findings in tissue engineered aortic valve in a sheep model
Background: Heart valve diseases are considered a common disease in human and animals, and valve replacement is an option for treatment of valvular diseases. Objectives: In this study efficacy of a tissue engineered valve in thoracic aorta was evaluated with transthoracic echocardiography. Methods: This study was undertaken on 6 male sheep. Echocardiography was performed on all sheep 24 hours b...
متن کاملDefining biomechanical endpoints for tissue engineered heart valve leaflets from native leaflet properties
The design and development of functional engineered tissues is dependent on multiple considerations, with biomechanics paramount for load-bearing constructs such as tissue engineered heart valves. As the cryopreserved allograft is the current standard for valve replacement in pediatric patients, identifying and quantifying essential structural–mechanical properties of the native valve leaflet i...
متن کاملPlanar biaxial behavior of fibrin-based tissue-engineered heart valve leaflets.
To design more effective tissue-engineered heart valve replacements, the replacement tissue may need to mimic the biaxial stress-strain behavior of native heart valve tissue. This study characterized the planar biaxial properties of tissue-engineered valve leaflets and native aortic valve leaflets. Fibrin-based valve equivalent (VE) and porcine aortic valve (PAV) leaflets were subjected to incr...
متن کاملDecellularized tissue-engineered heart valve leaflets with recellularization potential.
Tissue-engineered heart valves (TEHV) have been proposed as a promising solution for the clinical needs of pediatric patients. In vivo studies have shown TEHV leaflet contraction and regurgitation after several months of implantation. This has been attributed to contractile cells utilized to produce the extracellular matrix (ECM) during TEHV culture. Here, we utilized such cells to develop a ma...
متن کاملAutologous human tissue-engineered heart valves: prospects for systemic application.
BACKGROUND Tissue engineering represents a promising approach for the development of living heart valve replacements. In vivo animal studies of tissue-engineered autologous heart valves have focused on pulmonary valve replacements, leaving the challenge to tissue engineer heart valves suitable for systemic application using human cells. METHODS AND RESULTS Tissue-engineered human heart valves...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomechanics
دوره 40 2 شماره
صفحات -
تاریخ انتشار 2007